Isoperimetric Functions of Amalgams of Finitely Generated Nilpotent Groups along a Cyclic Subgroup
نویسنده
چکیده
We show that amalgams of nitely generated torsionfree nilpotent groups of class c along a cyclic subgroup satisfy a polynomial isoperimetric inequality of degree 4c. The distortion of the amalgamated subgroup is bounded above by a polynomial of degree c. We also give an example of a non-cyclic amalgam of nitely generated torsionfree nilpotent groups along an abelian, isolated and normal subgroup having an exponential isoperimetric inequality.
منابع مشابه
Isoperimetric Functions of Amalgamations of Nilpotent Groups
We consider amalgamations of nitely generated nilpotent groups of class c. We show that doubles satisfy a polynomial isoperimetric inequality of degree 2c. Generalising doubles we introduce non-twisted amalgamations and show that they satisfy a polynomial isoperimetric inequality as well. We give a su cient condition for amalgamations along abelian subgroups to be non-twisted and thereby to sat...
متن کاملIsoperimetric Functions of Finitely Generated Nilpotent Groups
We show that the isoperimetric function of a nitely generated nilpotent group of class c is bounded above by a polynomial of degree 2c.
متن کاملIsoperimetric inequalities for nilpotent groups
We prove that every finitely generated nilpotent group of class c admits a polynomial isoperimetric function of degree c+1 and a linear upper bound on its filling length function. 1991 Mathematics Subject Classification: 20F05, 20F32, 57M07
متن کاملQuasiconvexity and Amalgams
We obtain a criterion for quasiconvexity of a subgroup of an amalgamated free product of two word hyperbolic groups along a virtually cyclic subgroup. The result provides a method of constructing new word hyperbolic group in class (Q), that is such that all their finitely generated subgroups are quasiconvex. It is known that free groups, hyperbolic surface groups and most 3-dimensional Kleinian...
متن کاملDominions in finitely generated nilpotent groups
In the first part, we prove that the dominion (in the sense of Isbell) of a subgroup of a finitely generated nilpotent group is trivial in the category of all nilpotent groups. In the second part, we show that the dominion of a subgroup of a finitely generated nilpotent group of class two is trivial in the category of all metabelian nilpotent groups. Section
متن کامل